
METHOD OF GENERALIZED SIMILITUDE IN PROBLEMS OF THE MOVEMENT 

OF AN IMPERFECT GAS IN A THIN LAYER 
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The article presents results of the application, to problems of gas lubrication, 
of the method of generalized similitude for solving problems of boundary-layer 
theory. 

]. In the theory of lubrication, it is customary to assume that inertial forces are 
negligibly small compared to viscous friction forces. On the basis of this, equations may 
not include terms representing acceleration of friction, i.e., it may be assumed that the 
pressure gradient necessary to create buoyancy is developed by viscous friction alone. This 
assumption is based on the triviality of the so-called lubrication Reynolds number Re*, equal 
to the product of the regular Reynolds number (Re = Us and the relative thickness of the 
lubricant layer (~o/L). As a result, Re* = Re6o/L<< 1, which justifies ignoring inertial 
forces. The equations are simplified considerably in this case. They are integrated and 
their solution is represented in the form of a single pressure equation, which is nonlinear 
in the case of gas lubrication. Methods of integrating the latter have been well developed 
and are contained, e.g., in [], 2]. 

However, the number Re* may be of the order of unity or even greater (Re* 9]) for 
sliding bases on high-speed machines and supports with a large relative thickness of the 
lubricant layer. Inertial forces cannot be ignored in these cases, but rather must be taken 
into account in final design of the support, i.e., the convective (nonlinear) part of the 
equations must be retained. 

In this case, the flow of viscous ]iquids and gases is described by parabolic equations 
[2], i.e., the same type of equations as describe the boundary layer. The difference between 
these groups of equations lies in the fact that problems of boundary-layer theory generally 
involve calculation of nominal thicknesses of the layer from an assigned distribution of 
pressure or velocity on the external boundary of the layer, while lubrication theory generally 
entails the solution of the inverse problem-- calculation of the pressure distribution for a 
known thickness of lubricant layer. 

The survey article [3] examined methods of designing sliding supports with allowance for 
lubricant inertia. In addition to this, we should note the possibility of using integral 
relations [4]. 

The present article, using two-dimensional problems of the steady movement of a gaseous 
lubricant with allowance for inertial forces, proposes the use of the method of generalized 
(parametric) similitude advanced by Loitsyanskii to solve problems of boundary-layer theory 
[5]. We explained the essence of the method in [6] as it pertains to problems of the hydro- 
dynamic theory of lubrication: equations are formulated for current and enthalpy functions 
in variables which represent a set of parameters containing the geometric, kinematic, and 
thermodynamic conditions of lubrication problems, so that the final form of these equations 
does not contain specific features of the problem in explicit form. Since the formulated 
equations and their solutions turn out to be general for all problems, the equations are 
called universal equations. The solutions to these equations can be obtained, tabulated, 
and shown in a form convenient for ready practical reference. In specific calculations, a 
solution will be found to problems of lubrication theory which consists of integrating a pres- 
sure equation that generalizes the Reynolds equation for the case of allowing for inertial 
forces and transforms into the latter as Re* § 0. 

2. General Formulation of the Problem. Assuming the triviality of the relative 
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thickness of the lubricant layer and smoothness of its contour, the steady movement of the 
lubricant is described by the system of equations 

au au 1 Op + I O Ou apu ~ apv _ o ;  u - - + v  . . . .  , 
Ox Oy Ox . Oy p Ox p Oy ~ a y  

Oh Oh u Op 1 1 c] Oh ~ ( Ou ~ 2 O--C = 0; u § v - -+- ~ + 
a9 Ox Og 9 Ox Pr p Oty ~ 9 \  OU ] 

with the boundary conditions 

(i) 

u = U ,  v = O ,  h=h~ for y = O ;  u = v = O ,  h = h  2 

for ~' = 6 (x); for x = xo u = uo (~), h = ho (y). (2) 

To close the system of equations, we use the generally accepted assumptions in [5]: 

the state of the gas conforms to ClapeyronVs law 

p _ k- 1 h; (3) 
p k 

the dynamic viscosity coefficient is a power function of the absolute temperature (en- 
thalpy) : 

- ~ = H~; ( 4 )  

the Prandtl number Pr = ~Cp/~ is independent of the temperature and is a physical con- 
stant of the gas. 

As in the case of boundary-layer equations, Eqs. (I) may be put in a form close to the 
form of the equations of motion of an incompressible liquid. To this end, we will use 
Dorodnitsyn's variables [5] 

x g 

u Po . 9o 
X~ 0 

In these variables, Eqs. (1) and the boundary conditions take the form 

- a . 1 au  Ou Ov Ou Ou 1 dp _~_ VO _ _  H n- --, 

Oh - Oh u dp % a Hn _1 "Oh ' [ au ) 2; 
u a ~  q- v - -  -~ ( 6 )  

Oq p d~ Pr Oq 0~ + v~ ~ &l ] 

Here 

~ = 0 ,  u = U ,  v = O ,  h----hi; ~; = ~16, u = $ = O ,  

h = G ;  for ~ = ~  u = u o ( %  h = h o ( n ) .  
(7) 

Using the formulas 

6 

v = vH - l  -}- u P__E &l .  f ~ dy. , % = (8) 
ax P J P0 

0 

a~ aq~ 
u = - - ;  ~7 = (9) aq a~ 

we make the transformation in Eqs. (6) and boundary conditions (7) to the current function ,~: 

_ a H~_I  0 2 ~ .  a~ a2~ a~ oz~ 1 dp + Vo 
a~ o~a~ a~ ayp p d~ O~ a q ~ (!o)  

O# Oh " ' O# ,Oh 1 O~ dp % O Hn_l Oh f a2~ ~ ~; 
o~ o-~ o~ O~l = 9 oq d~ -k  Pr &l &l +%H"-~ \ a ~  } 
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where 

o~ 
= O, a_~ = u ,  h = h i  fo~ n=O; r ._~ =o,  h = h  2 fo~ ~ = ~ ;  

o_n 

r = *o (n), h = ho (n) for ~ = ~o, (11) 

i 
6 

Q = udn  - -  Qo _ const; Q0 is the mass flow rate of the lubricant. 
P0 

0 

3. Universa l  Equa t ions .  We w i l l  show t h a t  the above system of equa t ions  (I0) and 
boundary c o n d i t i o n s  ( l l )  can a c t u a l l y  be w r i t t e n  i n  the a fo r emen t ioned~un ive r sa l  form. To 
t h i s  end, l e t  us make the t r a n s f o r m a t i o n  to the new v a r i a b l e s ,  ~, and H: 

= n ; r n)=Q(D(~, ~); h(~, n ) = h ~ + ( h ~ - - h  0tT(~, ~). 

Using the usual formulas for such a transformation 

0 O 1 dn6 O O 

a-~ = o~ ~ - -  ' = ~ - a ~  04 on 
we have the  system of  equa t ions  

a H~_ , O2(D + Q dn8 �9 [ a(D �9 ~ - +  en6 

1 0 O a I aa 
n8 O~' On ~ .~ 0 ~  ' 

[ 02(D a(D a(D 

(12) 

(13) 

0 2 0  ] = HP; 
a~a~ j 

1 0 0f /  O ~ 
_ _ _  H~-.I + -  
Pr 0~ 0~ Ahn~ 

wi th  the boundary c o n d i t i o n s  

0(D 
(D = O, 

0~ 

0(D 
( D = l ,  

0~ 

In Eqs. (14),  we adopt the n o t a t i o n  

[up + m - , [  o~r ~] 0n0 [ ea o .  o .  
~-aST~ / j + v 7  0~ 0 - ~ - -  0-4- - -  

U~8, /~----0 at ~ =  0; 
Q 

--0, / t = 1  at T = I .  

OB ]=0 
0~ (14) 

(15) 

p _ Po~ d In p 
~oQ d~ (16) 

The equations include dimensionless complexes which themselves include quantities char- 
acterizing the kinematic, geometric, and thermodynamic conditions of the flow of the gaseous 
lubricant. Let us use the complex fl = (Q/~o)(d~/d~) as the basis for constructing the 
series of complexes 

[h---- QkN~-lv~ dkN6d~ ~ (k--  O, 1, 2, "")' (17) 

which,  by analogy wi th  b o u n d a r y - l a y e r  t h e o r y ,  we w i l l  c a l l  form-parameters  or ,  s imply,  param- 
e t e r s .  The parameter fo, equal to unity, is included in the analysis for the sake of the 
generality of the notation. The derivatives with respect to ~ of this series of parameters 
give the recurrent relation 

Qn8 dh = (k-- I) hh + fk+, = ok+,, (IS) 
~o d~ 

which relates the derivative of the parameter with the number k to the parameter with the 
number which is larger by unity, and which lies at the basis of the procedures used to obtain 
series of parameters. The complexes 

fv = Un___~8 fa ----' Q" Q ' Ahn~ ( ~ 9 ) 

do not  form parameter  s e r i e s ,  s ince  t h e i r  d e r i v a t i v e s  are expressed  through the complexes 
themselves  and the parameter  fx :  

Qn8 dry _ f,fv, On8 dfa = - -  2f , fa  (20) 
'% d~ '% d~ 
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and have an independent value. Here, the parameter fd is an analog of the Eckert number 
familiar in heat-transfer theory and accounts for the flow of heat to the lubricant layer 
due to dissipation and compression of the gas. 

Assuming the randomness of the continuous functions -- differentiable as many times as 
we please -- entering into the determination of the parameters of (]7) and (19), we may take 
them as new independent variables and complete in the equations the final transformation 
from the parameter space {~, ~} to the parameter space {fk, fv, fd, ~} using the formulas 

Q__~ O ~ 0 a =L, (2]) Vo g~ - Oh+, ,,~ -+-fffv air 2fffa af---~ 
where summation is carried out according to the repeating index k (k = I, 2, ...). As a 
result, Eqs. (14) take the universal form 

__0 020 0~ 0'~ a~ ( o~ ~] H " - '  + f, ( ~ 2+ [ L ( ~ )  -- L = HP; 
am am' \am ] L am' am am } 

P--F a---+- �9 am + h PH + k am' ! J + ---6U L ( ~ ) - -  a--U 

with the boundary conditions 

=0, O~ _fv, H = 0  a t  m = 0 ;  
am 

= 1, 0 ~  _ 0 ,  H = I  at m = t .  (23) 0m 
By virtue of the fact that the pressure is independent of the transverse coordinate, the 
function P is a function only of the parameters and is determined from the condition ~(1) = 
I. 

The point of the parameter space fl = f2 = ... = fk = ..- = fv = fd = 0 is a regular 
singular point of the system (22). System (22) degenerates into the following system at 
this singular point: 

0 H~_l 0'% _PoHo; +Hn-10Ho Om Om ~ Om -- O, (24) 

thie solution of which, with conditions (23), allows us to make an approximate substitution 
for the last condition in (11). Here, we will assume that fk = fv = fd = 0 (k = I, 2~ ...), 

= ~o, ~ = ~o, P = Pc. 

Given the usual assumption of the theory of gas lubrication on the isothermal nature of 
flow in the lubricant layer, the need for heat balance in the equation is done away with. 
Thus, the equation of momentum takes the form (the dots signify derivatives with respect to 
m) 

q-- f,@2 q-- [L (~) ~ - -  L (~ )~1  = P, (25) 

which in form is the same as the analogous equation of gas-dynamic lubrication theory [6]. 

4. Parametric Approximations. In the presence of an infinite series of parameters (]7), 
the differential operators L of (21) represent an infinite sum of derivatives with respect to 
the parameters. Thus, integration of the universal equations is possible in a practical 
sense only if we consider a finite number of these parameters in so-called parametric approx- 
imations. 

Here, the following equation is a single-parameter approximation (fv # 0, f~ = f2 = 
�9 -. = fk = ..- = 0): 

~(1) = po) ,  (26) 

the solution of which, with allowance for the conditions (23), yields the following expres- 
sions for the functions %(z) and p(1): 

�9 (')(% fv)=(3--2m)~'+fv(1--m)'m; P ( ' ) = - - 1 2 ( 1 - - 1 f v  ), (27) 

corresponding to the inertialess flow of gaseous lubricant normally investigated (Re* <<;). 
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We will designate as a two-parameter approximation of the equation its "interval" 

with the conditions 

~(2) + f' IO(5)12 + fffv [ ~D(~) O(D(2)Of---~ - -  0(2) 00(2) ] -~ p(5) 

q~=O 0 ( ~ ) = 0 ,  0 (5 )= fv ;  q ~ = l  0 (5)=  1, 0 ( 2 ) = 0 .  

(28)  

(29) 

With fv = 0, function ~(2) should satisfy the equation 

~ 5 > +  f~ [0~5)1~ = p ~ 5 ) ( f , )  (30) 
with conditions (29). This approximation will be accurate if function n~(~) is linear in 
the Dorodnitsyn variables. Also, the equation of the n-parameter approximation will generally 
be exact if this function is a polynomial of the (n -- ]) degree in these variables. 

The equations in the above approximations with the corresponding conditions give 
generalized-similar solutions of isothermal problems of the gasdynamic theory of lubrica- 
tion. The simplest of such generalizations of the concept of similitude is the local-similar 
solution, presented in [6], of the equation 

~ + f ,(I~2 = P (31) 

with conditions (29). In this solution, the partial derivatives with respect to the param- 
eters are neglected. It is easy to see that this approximation is intermediate between 
single- and two-parameter approximations. In this case, we will call the "interval" of Eq. 
(25) which includes no derivatives with respect to the parameter fn (summation in (21) 
according to k up to n-- I) the local-n-parametric approximation of this equation. 

Numerical methods are presently used to solve the equation of the two-parameter approxi- 
mation (28). We will be limited by the fact that we will represent the solution in the 
neighborhood of a regular singular point in the form of an expansion into a series in powers 

r  o+i:2 
k,=l k~=l 

]r ]r h2f2ha z ,  " ' "  o ~ , , ~  . . . . . .  ~ . . . . . .  . . .  1 ~ ,  . . . .  
kn=l 

. . . . . . .  /v  h f~ . .  f,,-~ .... 
�9 �9 �9 P k ~  G . .  , h  n ,  ha h~ ks h n 

(32) 

of the parameters: 

co 

k:t~l h~:=i kn=l 

having limited them to intervals of the form (two-parameter approximation): 

�9 --- ~oo + Ood~ + (r + o~dO/v + (ci)~o + ~ d O  f,~; (33) 

P = Poo + Pod~ + (&o + / % h )  fv + (Go + GdO fi,. 

Let us substitute these expansions into Eq. (28) and equate the coefficients at identi- 
cal combinations of the parameters. Using direct integration to solve the resulting system 
of ordinary differential equations with conditions which follow from (29) and then substitu- 
ting the expansions (32) in (29), we obtain the following expressions for the coefficients 

~ij and Pij : 

~oo = (3 - -  2q~) qo2; 

6 q~ 7 3 8 3 n 9 q~3 q.~__ 
o0, = - 3-5 + -5 ~ " - 5  ~ + - ~  ~ r  

(Iho = q) (1 -- q~)2; 020 = O; 

1 ~p~__ 3 q : +  cps__ _ _ q : +  cp2; 
r  = -7  Y Y 70 

1 q : +  2 q:__ 7 ~ 1 "~2 q~ 1 
@~ ---- - -  --35 -~ 30 + - 6  (pa - -  - -  - ~  @; ( 3 4 )  

Poo=--12; Pol-- 54. Pro=6; P I , = - -  9 . 
35 ' 35 ' 
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0~8 Re *~= Of z- 

o o,e ~, qe qs 2 

F i g .  1. D i s t r i b u t i o n  o f  p r e s s u r e  p = 
(P -- p o ) / P o  a l o n g  the  l u b r i c a n t  wedge .  

1 
P2o=O;  P ~ l ~ - - - - "  (35) 

7 

5. Equation for Pressure. Equation (16) is solved in specific calculations of lubri- 
cant flow. Allowing for the resulting form of the function in (33) and (35), we must first 
change over from the Dorodnitsyn variables in this equation to the physical variables x and 
y. As a result of this transformation, we have the following expressions for the function 
P and parameters fv and f1: 

P =  12 P 6 S # ;  I v = 2  A-~-P6; [ i =  1 q--q-Re* (p6)__j (36) 
q ax q 2 A ~ p ' 

where 

6FOUL 12FoQoL . A= (37) 

q p0p06~ ' p06~ 
Now substituting Eqs. (36) and (37) in (33), we obtain the final equation for pressure. 

This equation generalizes the Reynolds equation for the case of inertial flow of a gas lubri- 
cant : 

where 

1 a o i  q ! ) 
F i = a o o + a ~ R e * 6 ( P 6 ) '  1 +  2" atv A ,off ; 

F~ = 1 + a~--i Re*6 (p6)'. 
aio (39) 

The c o e f f i c i e n t s  a i j  a r e  e x p r e s s e d  t h r o u g h  P i j  ( a i j  = P i j / 1 2 )  and can  be r e g a r d e d  n o t  o n l y  as 
c o e f f i c i e n t s  o f  a s e r i e s  e x p a n s i o n ,  b u t  a l s o  as c o e f f i c i e n t s  o f  a p o l y n o m i a l  o f  t he  t y p e  
(33) -- a p p r o x i m a t i n g  the  f u n c t i o n  P i n  t he  s o l u t i o n  o f  a u n i v e r s a l  e q u a t i o n  i n  a g i v e n  i n t e r -  
v a l  o f  change  i n  t h e  p a r a m e t e r s  f v  and f l .  As b o u n d a r y  c o n d i t i o n s ,  we u s e  t h e  c o n d i t i o n s  o f  
c o n s t a n c y  and e q u a l i t y  o f  t h e  p r e s s u r e  a t  t h e  ends  o f  t h e  l u b r i c a n t  l a y e r :  

at X ----- Xo P ----- Po; at X = X/. p - -  po ~ ( 4 0 )  

Use of the method of averaging [3] gives the same form of equation for pressure as (38), 
differing only in the numerical coefficients and the absence of a second term in the expres- 
sion for F I. 

6. Example of Calculation. As an example of the use of the method of generalized simi- 
litude to calculate flows of gaseous lubricant, let us examine the problem of a lubricant 
wedge with a gap of linear form: 

L 
6=l--~v, ~= l l  (41) 
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Fig. 2. 
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Fig. 3 

Dependence of buoyancy coefficient on wedge wetting 

Dependence of buoyancy coefficient on compressibility 

For convenience, we will change over in Eq. (38) to the new function '~ = p~ and write it in 
the form 

with the boundary conditions 

Ae#" + Be#' + Ce# = 0 (42) 

at x=0 ~=I; at x=] ~=I--= (43) 

We have the following expressions for the coefficients A, B, and C: 

A = (1 --2a2iARe*)6e#F, F = 1/Fl; 

B = ( I  -- 2a~lA Re*) 6e#'F+[(1 -- 2a~iA Re*)(6F)'-- 26'FI q~ -- 2amAF; 

C = - -  [2atoAF ~ + 6'F'e#]. (44) 

Equation (42) is nonlinear. We will solve it by the iteration method, calculating the 
coefficients A, B, and C in the preceding iteration. We begin the iteration with zero. The 
function @ is arbitrarily assigned as follows: 

e# = 1 + x - - ( 1  + cz)x ~. (45) 

For the numerical solution of Eq. (42), we replace it with the finite-difference analog 

a~e#~+l -6 2b~e#~ -6 cne#~-i = 0, (46) 

where 

a,~ = 2A~ -6 B,~M1; bn = CA~IZ-- 2A; cn = 2A,~ - -  B,~A?q. (47) 

The last equation was solved, on a grid with number of nodes N = 100 (AT] = 0.01), by 
the method of orthogonal trial runs until satisfaction of the condition 

N 

max [e#~-- e#~-I I < 8 = 0,001, (48)  
n = 0  

where  i i s  t he  number o f  t he  i t e r a t i o n .  

The f l o w  r a t e  q i n  Eq.  (39) f o r  F1,  w i t h  s a f i i s f a c t i o n  o f  t h e  c o n d i t i o n s  o f  R o l l e ' s  
theorem of differential calculus, is determined from Eqs. (33) at point x*, where dp/dx = 0. 

The dimensionless value of buoyant force is determined from the known distribution of 
pressure along the lubricant wedge using the formula 

I 

W _ ~ (cp/6-- 1)dx. (49) 
w = Po L 

0 

Figures I, 2, and 3 show the distribution of pressure and the coefficient of the ver- 
tical component of buoyancy for certain values of ~, A, and Re*. These results show that the 
role of lubricant inertia leads to an increase in the ordinates of the pressure distribution, 
a certain shift in the pressure maximum in the direction of a smaller gap, and a consequent 
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increase in buoyancy. Thus, e.g., the maximum increase in the buoyancy coefficient at ~ = 
0.5, A = I, and Re* = 5 is about 30% of its value at Re* = 0. 

NOTATION 

u, v, components of lubricant velocity; x, y, Cartesian coordinates; p, pressure; p, 
density; ~, dynamic viscosity coefficient; h, enthalpy; ~, thickness of lubricant layer. 
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JET FLOW OF SUPERCRITICAL AQUEOUS SOLUTIONS OF ELECTROLYTES 

WITH JOULE HEATING IN THIN CAPILLARY TUBES 

S. R. Shterner UDC 537.84:532.522.2 

It was established that the heating of an aqueous solution of electrolyte in a 
thin capillary tube by a current passed through the solution is accompanied by 
movement of the liquid in the heated volume. Jet flow of the liquid was ob- 
served at certain values of the capillary-tube parameters and geometry. 

The heating of an electrolyte solution in a capillary tube by a current passed through 
the solution leads to the onset of steady-state flow of the liquid�9 

The electrolytic cell used to study the properties of electrolyte solutions in the 
supercritical region takes the form of two glass vessels filled with the test liquid. The 
vessels are joined only by a thin ruby capillary tube. The electrodes are located a con- 
siderable distance from the tube. Watch-grade jewels of the STs type, made of synthetic 
ruby-t0 (GOST 7137-73), were used for the capillary tubes. Ruby-10 can be soldered with 
molybdenum glass [I]. 

The capillary tube plays the role of concentrator of the electric field when a current 
is passed through the cell, so that the electrolyte is heated within the small (~I0 -5 cm ~) 
volume of the tube. 

The pressure in the test liquid was greater than the critical value, amounting to ~250 
bar for aqueous solutions of LiCI, NaCI, and KCI at concentrations from 0.0125 to 0.05 M 
(molality) [2]. 

With the heating of the solution inside the capillary tube by an alternating current, 
one can observe transient ejections of heated liquid from the channel. At a certain value 
of supply voltage (with a certain amount of heating), these transients develop into steady- 
state flow in the form of a jet of heated liquid issuing from the capillary tube (Fig. 1). 

S. M. Kirov Ural Polytechnic Institute, Sverdlovsk. Translated from Inzhenerno- 
Fizicheskii Zhurnal, Vol. 40, No. 2, February, 1981. Original article submitted January 
21, 1980. 
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